Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО	УТВЕРЖДАЮ			
Заведующий кафедрой	Заведующий кафедрой			
Кафедра композиционных	Кафедра композиционных			
материалов и физико-химии	материалов и физико-химии			
металлургических процессов	металлургических процессов			
(КМФХаминовине) кафедры	металлургических процессов наименование кафедры			
	Шиманский А.Ф.			
подпись, инициалы, фамилия	подпись, инициалы, фамилия			
«» 20_г.	«» 20г.			
институт, реализующий ОП ВО	институт, реализующий дисциплину			
МЕТОДЬ	АММА ДИСЦИПЛИНЫ КОПИЧЕСКИЕ Ы АНАЛИЗА			
Дисциплина Б1.В.ДВ.08.01 Спе	ктроскопические методы анализа			
Направление подготовки / специальность				
Направленность				
(профиль)				
——— Форма обучения очная	π			
Форма обучения очная	<u>'1</u>			

Красноярск 2021

2021

Год набора

РАБОЧАЯ ПРОГРАММА ЛИСПИПЛИНЫ

составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования с учетом профессиональных стандартов по укрупненной группе

220000 «ТЕХНОЛОГИИ МАТЕРИАЛОВ»

Направление подготовки /специальность (профиль/специализация)

22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ

Программу составили

Д-р.хим. наук, Профессор, Лосев В.Н.

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Фундаментальная подготовка и приобретение профессиональных навыков в области современных спектроскопических методов определения химических элементов в объектах различного вещественного состава и агрегатного состояния.

«Спектроскопические методы исследования» является области специальной дисциплиной, дающей студентам знания спектроскопических методов анализа определения применения ДЛЯ сверхнизких концентраций низких элементов. курсе рассматриваются методы, базирующиеся на поглощении и излучении электромагнитного излучения атомами и молекулами.

Предметом современные курса являются атомноспектроскопические (атомная абсорбция, атомная эмиссия и атомная флуоресценция) и молекулярно-спектроскопические методы анализа (спекросфотометрия люминесценция, И также метод массспектрометрии).

1.2 Задачи изучения дисциплины

- освоение теоретических основ спектроскопических методов опре -деления элементов, их возможности, преимущества и недостатки, принципиальное устройство приборов и назначение каждого отдельного узла приборов;
- определение роли и места спектроскопических методов в общем арсенале методов аналитической химии;
- представления о современном состоянии и тенденциях развития спектроскопических методов анализа;
- осуществление правильного выбора спектроскопического метода для анализа конкретного объекта, исходя из природы объекта анализа его агрегатного и вещественного состава, перечня и концентрации определяемых элементов, достигаемой точности и экспрессности;
- приобретение навыков работы на приборах, подготовки проб для проведения определения.
- 1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ПК-4:Способен использовать знания о методах исследования, анализа и моделирования свойств веществ (материалов), физических и химических

процессов, про обработке и мо	отекающих в материалах, на практике при их получении, одификации			
ПК-4.1:Знает м	иетоды исследования, анализа, диагностики и моделирования			
свойств вещес	тв (материалов)			
Уровень 1	Методы исследования, анализа, диагностики и моделирования			
	свойств веществ (материалов).			
Уровень 2	Методики расчета сырьевых материалов.			
Уровень 1	Подготавливать исходное сырье, основные и вспомогательные материалы с учетом требований охраны труда.			
Уровень 2	Калибровать приборы для проведения лабораторного анализа проб (образцов) сырья и полуфабрикатов.			
Уровень 1	Отбор проб (образцов) сырья и полуфабрикатов на разных стадиях производства.			
Уровень 2	Подготовка проб (образцов) сырья и полуфабрикатов к лабораторному анализу.			
ПК-4.2:Осуще	ствляет выбор методов проведения испытаний, обработку и			
	гатов исследования, анализа и диагностики материалов и изделий			
Уровень 1	Технологию производства.			
Уровень 2	Оборудование лаборатории и правила его эксплуатации.			
Уровень 1	Выбирать метод проведения испытаний, обработку и анализ			
•	результатов исследования, анализа и диагностики материалов и изделий.			
Уровень 2	Контролировать эффективность расходования сырья и основных материалов.			
Уровень 1	Проведение испытаний сырья, полуфабрикатов и готовой продукции.			
Уровень 2	Определение параметров измерения качественных и количественных			
	характеристик проб (образцов) сырья и полуфабрикатов.			
ПК-4.3:Модели	ирует поведение материалов, оценивает и прогнозирует их			
эксплуатацион	ные характеристики			
Уровень 1	Правила проведения испытаний и приемки продукции.			
Уровень 2	Методы и средства контроля качества сырья и			
	наноструктурированных композиционных материалов.			
Уровень 1	Контролировать параметры опытного образца.			
Уровень 2	Производить испытания опытных образцов различными методами.			
Уровень 1	Отбор новых образцов продукции.			
Уровень 2	Анализ испытаний новых образцов продукции.			
комплексных и производства д	н применять навыки использования принципов и методик исследований и испытаний материалов, изделий и процессов их для анализа причин брака и разработки предложений по его ию и устранению			
	няет навыки использования принципов и методик комплексных			
	испытаний и диагностики материалов, изделий и процессов их			
производства, проводит оформление результатов, разработку предложений по				
производства, проводит оформление результатов, разраоотку предложении по предупреждению и устранению брака				
Уровень 1	Требования, предъявляемые к сырью, материалам, готовой продукции.			
Уровень 2	Методы и средства контроля качества сырья и			
л ровень Z	постоды и средства контроля качества сырвя и			

	наноструктурированных композиционных материалов.
Уровень 1	Выявлять причины брака в случае несоответствия продукции по
	качеству.
Уровень 2	Вносить предложения по экономичному использованию сырья.
Уровень 1	Определение последовательности проведения экспериментальных
	работ и оформление инструкций.
ПК-6.3:Пров	одит анализа сырья, полуфабрикатов и готовой продукции
производства	наноструктурированных композиционных материалов,
	гчетную документацию, записи и протоколы хода и результатов
_	ов, документацию по технике безопасности и безопасности
жизнедеятелн	ьности
Уровень 1	Нормативные правовые акты и локальные документы по
	технологическому обеспечению производства.
Уровень 2	Порядок заполнения и оформления технической документацию
Уровень 1	Составлять документацию на несоответствующую продукцию.
Уровень 2	Разрабатывать меры по снижению отходов производства.
Уровень 1	Разработка предложений по комплексному использованию сырья.
Уровень 2	Анализ качества и количества отходов производства на различных
	стадиях технологического процесса.
ПК-6.2:Осущ	ествляет лабораторно-аналитическое сопровождение разработки
наноструктур	рированных композиционных материалов
Уровень 1	Проведение стандартных и дополнительных лабораторных
	испытаний различных видов нового сырья.
Уровень 1	Выполнять экспериментальные работы и обобщать их.
Уровень 1	Подготовка методического руководства по проведению лабораторных
	анализов, испытаний и исследований.

1.4 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Спектроскопические методы анализа» относится к циклу обязательных дисциплин вариативной части основной образовательной программы.

1.5 Особенности реализации дисциплины Язык реализации дисциплины Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		Семестр		
Вид учебной работы	Всего, зачетных единиц (акад.час)	6	7	
Общая трудоемкость дисциплины	7 (252)	3 (108)	4 (144)	
Контактная работа с преподавателем:	2,5 (90)	1 (36)	1,5 (54)	
занятия лекционного типа	1 (36)	0,5 (18)	0,5 (18)	
занятия семинарского типа				
в том числе: семинары				
практические занятия	1 (36)	0,5 (18)	0,5 (18)	
практикумы				
лабораторные работы	0,5 (18)		0,5 (18)	
другие виды контактной работы				
в том числе: групповые консультации				
индивидуальные консультации				
иная внеаудиторная контактная работа:				
групповые занятия				
индивидуальные занятия				
Самостоятельная работа обучающихся:	2,5 (90)	1 (36)	1,5 (54)	
изучение теоретического курса (ТО)				
расчетно-графические задания, задачи (РГЗ)				
реферат, эссе (Р)				
курсовое проектирование (КП)	Нет	Нет	Нет	
курсовая работа (КР)	Нет	Нет	Нет	
Промежуточная аттестация (Экзамен)	2 (72)	1 (36)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

	Summing.							
				ятия кого типа				
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционн ого типа (акад.час)	Семинар ы и/или Практиче ские занятия (акад.час)	Лаборато рные работы и/или Практику мы (акад.час)	Самостоя тельная работа, (акад.час)	Формируемые компетенции		
1	2	2	1	5	6	7		
1	Атомно- абсорбционный анализ.	6	6	4	12			
2	Атомно- эмиссионный метод анализа.	6	6	4	12			
3	Фотометрически й метод анализа.	6	6	4	12			
4	Люминесцентны й метод анализа.	6	8	4	18			
5	Масс- спектрометричес кий метод анализа.	6	10	2	18			
6	Атомно- флуоресцентный метод анализа.	6	0	0	18			
Всего		36	36	18	90			

3.2 Занятия лекционного типа

				Объем в акад.ча	cax
№ п/п	№ раздела дисциплин ы	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме

	1		1	ı	
		Параметры,			
		характеризующие			
		электромагнитное			
		излучение: длина			
		волны, частота,			
		волновое число.			
		Взаимодействие			
		электромагнитного			
		излучения с веществом.			
		Происхождение			
		спектров излучения и			
		поглощения. Факторы,			
		влияющие на форму и			
		положение спектров			
		поглощения и			
		излучения.			
		Сущность метода			
		атомно-абсорбционной	6		0
		спектрометрии.			
		Поглощение атомами			
		света. Источники			
1	1	излучения: лампы с		0	
		полым катодом,			
		высокочастотные			
		лампы, источники			
		сплошного спектра.			
		Способы получения			
		поглощающего слоя			
		атомов: пламена,			
		непламенные			
		атомизаторы.			
		Аппаратура и техника			
		атомно-абсорбционных			
		измерений.			
		Сравнительная			
		характеристика			
		используемой			
		аппаратуры для			
		определения следов			
		элементов с точки			
		зрения достигаемой			
		1 -			
		чувствительности.			

		Сущность метода атомно-эмиссионной спектрометрии. Принципиальная конструкция спектрометров. Пламя как источник возбуждения. Структура, состав,			
2	2	температура пламен различных типов. Способ введения анализируемых проб в пламя. Горелки и распылители. Процессы и реакции, протекающие в пламени. Дуговой и искровой разряды как источники атомизации и возбуждения. Температура образующейся плазмы. Состояние веществ и химические реакции в источниках атомизации. Способы введения анализируемых проб, находящихся в различных агрегатных состояниях. Применение лазеров и индуктивно-связанной плазмы. Лазерный микрозонд. Связь	6	0	0
		между интенсивностью излучения и концентрацией элементов в растворе.			

3	3	Фотометрический метод анализа. Связь между строением соединения и его спектром поглощения. Типы фотометрируемых систем. Закон Бугера-Ламберта-Бера. Коэффициент молярного поглощения. Отклонения от закона БЛБ и их причины. Понятие об истинном и кажущемся молярном коэффициенте поглощения. Однолучевые и двухлучевые спектрофотометры. Типы фотометрируемых систем. Производная спектрофотометрия. Твердофазная спектромерия.	6	0	0
---	---	---	---	---	---

Люминесцентный метод анализа. Различные	
виды люминесценции и	
их классификации.	
Основные	
закономерности	
молекулярной	
люминесценции: закон	
Стокса-Ломмеля,	
правило зеркальной	
симметрии (правило	
Левшина), закон	
Вавилова.	
Энергетический и	
квантовых выход	
люминесценции.	
Различные виды	
люминесценции.	
Спектрофлуориметры и	
спектрофосфориметры,	
принципы их	
устройства и	
отличительные	
4 4 характеристики. 6 0	0
Источники света (лампы	
линейчатого и	
сплошного спектра),	
диспергирующие	
системы, приемники	
излучения.	
Конструкции кюветных	
отделений для	
определения	
люминесценции	
веществ различного	
агрегатного состояния.	
Методы синхронной флуоресценции,	
трехмерные спектры люминесценции,	
спектральная и	
временная селекция.	
Органические реагенты,	
используемые при	
определении элементов	
определении элементов фотометрическим и	

5	5	Основные способы образования ионов: электронный удар, химическая ионизация, ионизация в поле, под действием излучения лазера, в индуктивно связанной плазме, тлеющем разряде, вакуумной искре и др. Способы массспектрального анализа, регистрация и интерпретация спектров. Качественный и количественный анализ. Анализ газообразных, жидких и твердых веществ. Изотопное разбавление в масс-спектрометрии. Локальный и послойный анализ. Области применения: изотопный, элементный и молекулярный анализ, определение газообразующих примесей. Хроматомасс-спектрометрия. Типы массанализаторов: линамические.	6	0	0
		анализаторов: динамические, статические, времяпролетные.			
6	6	Сущность метода атомной флуоресценции, как процесса сочетающего принципы атомной абсорбции и атомной эмиссии. Происхождение спектров атомной флуоресценции. Тушение флуоресценции. Аппаратурное оформление метода атомной флуоресценции.	6	0	0

Page 26 0 0

3.3 Занятия семинарского типа

	No			Объем в акад. час	ax
№	л <u>е</u> раздела	Наименование занятий		в том числе, в инновационной	в том числе, в
п/п	дисципл ины	паименование запятии	Всего	форме	электронной форме
1	1	Поглощение атомами и атомными ионами электромагнитного излучения. Формирование спектров поглощения. Использование спектроскопических буферов. Разрешающая способность атомноабсорбционных спектрометров. Метрологические характеристики атомноабсорбционного метода анализа. Решение задач по атомноабсорбционному определению элементов и метрологическим характеристикам.	6	0	0
2	2	Формирование спектров излучения атомами. Источники атомизации и возбуждения. Распрелделение Больцмана. Конструктивные особенности атомно-эмиссионных спектрометров и их разрешающая способность. Метрологические характеристики атомно-эмиссионного метода анализа. Решение задач по атомно-эмиссионному определению элементов и метрологическим характеристикам.	6	0	0

		*			
		Формирование			
		электронных спектров			
		поглощения. Закон Бугера-			
		Ламберта-Бера.			
		Химические и физические			
		причины отклонения от			
		закона Бугера-Ламберта-			
		Бера. Хромофорные и			
		ауксохромные группы			
		органических соединений.			
		Поглощение			
3	3	электромагнитного	6	0	0
		излучения комплексными			
		соединениями.			
		Метрологические			
		характеристики			
		фотометрического метода			
		анализа.			
		Решение задач по			
		фотометрическому методу			
		анализа и			
		метрологическим			
		характеристикам.			
		Формирование спектров			
		люминесценции.			
		Основные законы			
		люминесценции.			
		Формирование			
		излучательного состояния			
		комплексов металлов.			
		Флуоресценция и			
	4	фосфоресценция.			
		Сопоставление			
4		возможностей	8	0	0
-		фотометрического и			
		люминесцентного метода			
		анализа. Метрологические			
		характеристики			
		люминесцентного метода			
		анализа.			
		Решение задач по			
		люминесцентному			
		определению элементов и			
		метрологическим			
		характеристикам.			

5	5	Движение атомных ионов в электрическом и магнитном полях. Устройства детекторов атомных ионов. Массспектрометры с индуктивно связанной плазмой: квадропольные и времяпролетные. Метрологические характеристики массспектрометрического метода анализа. Решение задач по массспектрометрическому определению элементов и метрологическим характеристикам.	10	0	0
Page		характеристикам.	26	0	0

3.4 Лабораторные занятия

No			Объем в акад.часах			
№ п/п	<u>№</u> раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме	
1	1	Электротермическое атомно -абсорбционное определение мышьяка в природных водах.	4	0	0	
2	2	Атомно-эмиссионное определение цветных и тяжелых металлов в природных водах.	4	0	0	
3	3	Фотометрическое определение железа(II) с 1.10-фенантролином в водопроводных и минеральных водах.	4	0	0	
4	4	Люминесцентное определение кадмия(II) и алюминия(III) с иод-8-ксихинолин-5-сульфокислотой.	4	0	0	
5	5	Масс-спектрометрическое определение таллия, кадмия, ртути, титана в высокочистом алюминии.	2	0	0	

_		4.0		
III) a a E a		1 10	/\	1 //

5 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

6.1. Основная литература				
	Авторы, составители	Заглавие	Издательство, год	
Л1.1	Цитович И. К.	Курс аналитической химии: учебник	Москва: Лань, 2009	
Л1.2	Васильев В. П.	Аналитическая химия: Кн. 1: учебник для студентов вузов по химико-технологическим специальностям	Москва: Дрофа, 2005	
Л1.3	Кельнер Р., Мерме ЖМ., Отто М., Видмер Г. М.	Аналитическая химия. Проблемы и подходы: Том 1: в 2 томах : перевод с английского	Москва: Мир, 2004	
Л1.4	Кельнер Р., Мерме ЖМ., Отто М., Видмер Г. М.	Аналитическая химия. Проблемы и подходы: Том 2: в 2 томах : перевод с английского	Москва: Мир, 2004	
Л1.5	Васильев В. П.	Аналитическая химия: Кн. 2: учебник для студентов вузов по химико-технологическим специальностям	Москва: Дрофа, 2005	
Л1.6	Зенкевич И. Г., Карцова Л. А., Москвин Л. Н., Москвин Л. Н.	Аналитическая химия: Т. 2. Методы разделения веществ и гибридные методы анализа: учебник для студентов вузов по спец. "Химия": в 3-х т.	Москва: Академия, 2008	
Л1.7	Белюстин А.А., Булатов М.И., Дробышев А. И., Москвин Л. Н.	Аналитическая химия: Т. 1. Методы идентификации и определения веществ: учебник для студентов вузов по спец. "Химия": в 3-х т.	Москва: Академия, 2008	
Л1.8	Большова Т. А., Брыкина Г. Д., Гармаш А. В., Золотов Ю. А.	Основы аналитической химии: Т. 1: В 2-х томах: учебник для вузов по химическим специальностям и направлениям	Москва: Академия, 2010	
Л1.9	Алов Н. В., Барбалат Ю. А., Борзенко А. Г., Золотов Ю. А.	Основы аналитической химии: Т. 2: в 2-х томах: учебник для вузов по химическим специальностям и направлениям	Москва: Академия, 2010	

Л1.1	Зенкевич И.Г.,	Аналитическая химия: Т. 3. Химический	Москва:
0	Ермаков С. С.,	анализ: учебник для студентов вузов по	Академия, 2010
	Карцова Л. А.,	направлению и специальности	
	Москвин Л. Н.	"Химия" : в 3 томах	
Л1.1	Отто М.	Современные методы аналитической	Москва:
1		химии: перевод с немецкого	Техносфера,
			2008
Л1.1	Вайнфорднер Д.	Спектроскопические методы	Москва: Мир,
2	Д., Петрухин О.	определения определения следов	1979
_	М., Недлер В. В.	элементов: перевод с английского	
	, 	6.2. Дополнительная литература	
	Авторы,	Заглавие	Издательство,
	составители	Surname	год
Л2.1	Данцер К.,	Аналитика: систематический обзор:	Москва: Химия,
312.1	Мольх Д.,	перевод с немецкого	1981
	Клячко Ю. А.	перевод е пемецкого	1701
Л2.2	Мицуике А.,	Методы концентрирования	Москва: Химия,
112.2	Кузьмин Н. М.	микроэлементов в неорганическом	1986
	Тузымин 11. мі.	анализе: пер. с англ.	1700
Л2.3	Пешкова В. М.,	Методы абсорбционной спектроскопии в	Москва: Высшая
112.3	Громова М. И.,	аналитической химии: учебное пособие	школа, 1976
	Алимарин И. П.	для химических специальностей	школа, 1970
	Алимарин И. П.		
по 4	Положен Э. Г	университетов	Москва:
Л2.4	Чудинов Э. Г.,	Атомно-эмиссионный анализ с	Москва: Всесоюзный
	Бондарь В. В.	индукционной плазмой	
			институт научно- технической
			информации
			[ВИНИТИ] АН
			CCC□, 1990
Л2.5	Хавезов И.,	Атомно-абсорбционный анализ: пер. с	Ленинград:
112.3	Далев Д.,	болгарского	Химия, Ленингр.
	Яковлева С. 3.	Оолгарского	отд-ние, 1983
пос		V	
Л2.6	Головина А. П., Левшин Л. В.	Химический люминесцентный анализ	Москва: Химия,
по л		неорганических веществ: монография	1978
Л2.7	Зайдель А.Н.	Атомно-флуоресцентный анализ	Ленинград:
			Химия, 1983
Л2.8	Полуэктов Н. С.	Методы анализа по фотометрии пламени	Москва: Химия,
			1967
		6.3. Методические разработки	
	Авторы,	Заглавие	Издательство,
	составители		год
Л3.1	Лосев В. Н.	Спектроскопические методы анализа.	Красноярск:
		Сорбционно-спектроскопические методы	СФУ, 2012
		анализа: учебметод. пособие для лаб.	
		работ студентов спец. 150600	
		443 6	
		"Материаловедение и технология новых	
		"Материаловедение и технология новых материалов", 150100 "Материаловедение и технология материалов"	

Л3.2	Лосев В. Н.	Спектроскопические методы анализа:	Красноярск:
		учебметод. пособие [для магистрантов	СФУ, 2013
		напр. подг. 150100 «Материаловедение и	
		технологии материалов»]	

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Э1	Электронная библиотека по химии	http://mch1.chem.msu.su
	[Электронный ресурс]. – Электрон. дан.	
Э2	Каталог библиотеки химического	http://www.chem.msu.su/rus/elbibch.ht
	факультета МГУ [Электронный ресурс].	ml
	– Электрон. дан.	
Э3	Каталог ссылок по химии на ресурсы	http://markovsky.virtualave.net/chemon
	Интернет [Электронный ресурс]. –	line
	Электрон. дан.	

8 Методические указания для обучающихся по освоению дисциплины (модуля)

В процессе преподавания курса «Спектроскопические методы анализа» предполагается чтение лекций, проведение лабораторных занятий, решение задач на практических занятиях. Дисциплина «Спектроскопические методы анализа» преподается в 10 семестре 5 курса.

Лекционная часть курса предполагает рассмотрение нескольких основных тем, посвященных изучению спектроскопических методов, таких как: атомно-абсорбционная, атомно-эмиссионная, атомно-флуоресцентная и масс-спектрометрия, фотометрия и люминесценция.

Фундаментальной и в тоже время наиболее сложной темой курса является тема взаимодействия веществ с электромагнитным излучением.

В разделе «Фотометрический метод анализа» необходимо отразить следующие темы: связь между строением соединения и его спектром поглощения, закон Бугера- Ламберта-Бера, закон аддитивности, химические и физические причины отклонения от закона БЛБ и их причины.

Некоторые затруднения вызывает понимание y студентов формирования поглощающих и излучающих состояний в молекулах. Поэтому следует уделить особое внимание этому разделу курса особое внимание. Другие темы подробно рассматриваются курса на практических и лабораторных занятиях.

Важной темой является — аппаратура, используемая в спектроскопических методах анализа. На лекции, посвященной этой теме, следует обратить внимание студентов на Современное развитие спектроскопических методов анализа. В разделе курса посвященном,

принципам устройства и оборудованию для спектроскопии, следует, прежде всего, тщательно объяснить студентам на лекции основные узлы приборов, а также наглядно показать их применение на практических и лабораторных занятиях. При изложении данной темы следует особо уделить внимание современному оборудованию. При выполнении лабораторных работ используется следующее оборудование:

- спектрофотометр Lambda-35;
- спектрофлуориметр LS-55;
- спектрофлуориметр на базе монохроматора МДР-4;
- спектрофотоколориметр диффузного отражения «Пульсар»;
- атомно-абсорбционный спектрометр «Sollar 6»;
- атомно-эмиссионный спектрометр ICAP 6500 с индуктивно связанной плазмой.

В основу занятий положен демонстрационный метод, вместе с тем студенты также имеют возможность работать на уникальном оборудовании самостоятельно.

На практических занятиях следует уделить внимание решению тематических задач, дискуссионным методам. Контроль знаний студентов осуществляется в форме экзамена.

Самостоятельная работа студентов предусматривает:

- 1) Проработку лекционного материала, оформление и подготовку к защите лабораторных работ, а также к сдаче тестов промежуточного контроля и экзамена
 - 2) Работу по подготовке к практическим занятиям.

Задания на самостоятельную работу выдаются преподавателем, читающим дисциплину. При подготовке к занятиям, промежуточным экзамену студенты И при решении задач рекомендованную преподавателем приведенную литературу, И методических указаниях по практическим и лабораторным работам. Проверку выполненных заданий и тестов осуществляет преподаватель, читающий дисциплину.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

9.1 Перечень необходимого программного обеспечения

- 9.1.1 Программные пакеты: Microsoft Office; OpenOffice; Accelrys Discovery Studio Client, PASS Inet, ACD/Labs; ISIS/Draw; Avogadro; Arguslab; PC GAMESS, OpenBabel; Jmol; MacMolPlt онлайновые службы сайта http://www.nmrdb.org/
 - 9.2 Перечень необходимых информационных справочных систем

9.2.1	Электронно-библиотечная система «БиблиоТех»/ https://bibliotech.sspa.edu.ru/		
9.2.2	Университетская библиотека online/ http://www.biblioclub/		
9.2.3	Российский государственный педагогический университет им. А.И. Герцена.		
	Электронная библиотека/ http://portal.gersen.ru/		
9.2.4	Единое окно доступа к образовательным ресурсам Федерального портала		
	Российское образование/ http://window.edu.ru/window		

10 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Лабораторные работы проводятся на базе Центра коллективного пользования приборами Сибирского федерального университета, имеющего современное аналитическое оборудование: спектрофотометр Lambda-35, спектрофлуориметр LS-55, атомно-абсорбционный спектрометр «Sollar 6», атомно-эмиссионный спектрометр ICAP 6500 с индуктивно связанной плазмой, масс-спектрометр с индуктивно связанной плазмой XseriesII.

Учебные классы кафедры оборудованы мультимедийными проекторами, позволяющими проводить занятия в инновационной форме с применением активных методов обучения.